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How do you obtain plausible
correlation stress scenarios?

» Please type your answer / idea into the chat.

» Wait before you press 'Return’.
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Overview

Correlation lies at the heart of many financial applications: portfolio
risk-management, diversification, hedging.

Principal idea: link economically meaningful scenarios to
correlation scenarios

Stress testing: portfolio effect of adverse correlation scenario
Reverse stress testing: identify worst-case scenarios and their impact

First application: correlation stress testing of “London Whale”
portfolio
Packham, N. and Woebbeking, F.: A factor-model approach for cor-
relation scenarios and correlation stress-testing. Journal of Banking
and Finance, 101 (2019), 92-103.

Current work: generalisation to credit and stock portfolios

Motivation for correlation stress-testing


https://www.sciencedirect.com/science/article/pii/S0378426619300202 
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The “London Whale”

» “London Whale”: 2012 Loss at JPMorgan Chase & Co. of approx.
6.2 bn USD on a credit derivatives portfolio
Authorised trading position, hence risk management problem
Synthetic credit portfolio (SCP): 120 long and short positions, CDX
and iTraxx index + tranche products, investment grade and high-yield
» “Smart short” strategy: credit protection on high yield is financed by
selling protection on investment grade indices.
» Timeline:
— End of 2011: decision to reduce SCP's risk-weighted assets (RWA's).
— Avoid liquidation costs by increasing positions with opposite market
sensitivity (hedges).
— 23 March 2012: Senior executives ordered to stop trading on SCP;
net notional of 157 bn USD (up 260% from September 2011).
» Risk management of SCP focussed on value-at-risk (VaR) and
CSW-10 (credit spread widening of 10 basis points).

»  Publicy available information: JPMorgan, 2013; United-States-Senate, 2013a,b
London Whale
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6.2 bn USD on a credit derivatives portfolio
Authorised trading position, hence risk management problem
Synthetic credit portfolio (SCP): 120 long and short positions, CDX
and iTraxx index + tranche products, investment grade and high-yield
» “Smart short” strategy: credit protection on high yield is financed by
selling protection on investment grade indices. (+— correlation risk)
» Timeline:
— End of 2011: decision to reduce SCP's risk-weighted assets (RWA's).
— Avoid liquidation costs by increasing positions with opposite market
sensitivity (hedges). (< correlation risk)
— 23 March 2012: Senior executives ordered to stop trading on SCP;
net notional of 157 bn USD (up 260% from September 2011).
» Risk management of SCP focussed on value-at-risk (VaR) and
CSW-10 (credit spread widening of 10 basis points).
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The “London Whale” positions

Table: Top 10 Positions of SCP, 23 March 2012, USD net notional; several
positions have a market share close to 50%.

Index

Name Series  Tenor Tranche (%) Protection Net Notional ($)
CDX.1G 9 10yr  Untranched Seller 72,772,508,000
9 Tyr Untranched Seller 32,783,985,000

9 Syr Untranched Buyer 31,675,380,000

iTraxx.EU 9 5yr  Untranched Seller 23,944,939,583
9 10yr 22 — 100 Seller 21,083,785,713

16 Syr Untranched  Seller 19,220,289,557

CDX.1G 16 5yr  Untranched Buyer 18,478,750,000
9 10yr 30 — 100  Seller 18,132,248,430

15 Syr Untranched Buyer 17,520,500,000

iTraxx.EU 9 10yr Untranched  Seller 17,254,807,398
Net Total 137,517,933,681

Data source: United-States-Senate (2013a, Exhibit 36) and DTCC (2014, Section 1, Table 7).
London Whale
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Interest-rate modelling: Correlation parameterisation

» Parametric correlation models widespread in
interest-rate modelling / LIBOR market model,

e.g. Rebonato (2002); Brigo (2002); Schoenmakers and Coffey (2000);
Packham (2005)

> Simplest case: Correlation c;; between two forward LIBOR's is given by
Cij = e_ﬂ""'_j‘,

where § > 0 is a parameter, and i, j represent maturities.

» Captures stylised fact that correlations decay with increasing
maturity difference

London Whale

10



>

Correlation parameterisation

Idea: Carry over “distance” measure to other risk factors, such as
geographic regions, industries, investment grade vs. high-yield, ...

C': n x n-correlation matrix of n financial instruments’ returns.
Factors that determine the correlations: x = (x!, ... 2™)".

Correlation of securities 7 and j modelled as

cij = exp(—(Bilz; —xj| + Bolaf — 2F| + - 4 Bl — af)),

n,j=1,...,n,

with [1,..., 3., positive coefficients, determined through calibration.

Functional form implies that the greater “distance” |} — x|, the

greater de-correlation amongst securities 7 and j.

If two instruments are identical in all respects, then correlation is 1.

London Whale
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Correlation parameterisation

» Given historical asset returns, parameters (31, ..., 3,, are determined

e.g. by OLS on transformed correlations —In(c;; ).

» Scenario (e.g. “the correlation between investment grade and
high-yield securities decreases”) is implemented by increasing
corresponding [3-parameter.

» With parameters calibrated on a regular basis, the parameter history
can be used to obtain reasonable scenarios.

London Whale
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London whale: risk factors and correlation model

> All calculations on SCP portfolio of 23 March 2012 (117 instruments).
» Risk factors: — CDX vs. itraxx

— investment grade vs. high yield
— maturity
— index series

— index vs. tranche

» Parameterised correlation matrix:

cij = exp (—(B1[isCDX;—isCDX;|+ s isIG; —is| G|+ 35 |maturity, —maturity, |

+ Ba|series; — series;| + S5 isIndex; — isIndex;|)).

» Daily calibration of 1, ..., (5 from credit spread returns of 250 days.

» Time period: 1 March 2011 — 12 April 2012. Data source: Markit
London Whale 13



London Whale: calibration and results

Correlation matrices of 23 March 2012.
Left: Empirical correlation matrix

Right: parameterised (complete) correlation matrix

Dark red entries: unavailable correlations

Blocks of highly correlated data: CDX.IG, CDX.HY and iTraxx
London Whale
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London Whale: calibration and results
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» Coefficients of CDX and itraxx positions in London Whale position;
01/03/2011-12/04/2012.

» Distances normalised to [0, 1] to make coefficients comparable.

London Whale
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Stress-testing correlations

Stress-test: Effect on portfolio due to an adverse scenario.
A shift in correlation has no instantaneous effect on portfolio value,
therefore consider portfolio risk.
» Portfolio risk measured by value-at-risk (VaR) in variance-covariance
approach:
VaR, = V- Ni_o - (WT S w)"/?,

with
— current position value Vj,
— Ni_,: (1 — «)-quantile of the standard normal distribution,
— vector of portfolio weights w and

— covariance matrix X.
» For correlation stress test, need to consider portfolio variance

wT X w.
London Whale 17



Core and peripheral risk factors*

> Following e.g. Kupiec (1998), stress scenario comprises

— “core” risk factors (the ones that are stressed)
— “peripheral” risk factors (affected by stress).

» (s j < m core factor parameters that are stressed directly
» (3, remaining m — j peripheral risk factor parameters

» In normal distribution setting, optimal estimator of A3, conditional
on Af:
E(A/BU|A65) = Z’u,sE;}ABsa

where ¥, and X, denote the covariance and variance matrices of 3,
and (;.

London Whale
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Joint stress test of correlation and volatility*

» Correlation shocks often coincide with volatility shocks, see e.g.
(Alexander and Sheedy, 2008; Longin and Solnik, 2001; Loretan and
English, 2000).

» Simple model that combines both: multivariate ¢-distribution.

» In this case d-dimensional vector of asset returns X follows a normal
variance mixture distribution with decomposition (e.g. Ch. 6.2 of
McNeil et al. (2015))

X=VV-A-2Z,
where — 7 ~ N(0, I,),
— V' is a scalar r.v. independent of Z,
- V~lg(1/2v,1/2v), i.e., V follows an inverse gamma
distribution,
— Aisad x k matrix such that & = AA7.
London Whale 19



Scenario selection and Mahalanobis distance

» Scenario selection: What is the worst scenario amongst all scenarios
that occur within some pre-given probability?

» Let 3= (B1,...,Bm)T be a random vector with E(3) = 3 and
covariance matrix Xg.

» Mahalabonis distance:
_ _\1/2
D)= (B-B7=5'(8-B) "

» Maha associated with ellipsoids in
normal (or elliptical) distributions.

» Find worst-case scenario within
given ellipsoid.

London Whale
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Risk implications from correlation stress-testing

correlation stress plus vol stress
Maha level VaRo.99 t-VaRop.g9 Change(%) ¢-VaRo.o9 Change(%)
base case 339.32 354.98 354.98
0.9 372.89 390.10 9.89 464.40 30.83
0.99 381.08 398.67 12.31 617.38 73.92
0.999 386.88 404.74 14.02 780.37 119.84
unconstrained™ 620.96 649.62 83.00 1252.53 252.85

*Unconstrained w.r.t. correlation changes; vol stress level at 0.999.
» SCP portfolio’s 1-day 99% value-at-risk for different Mahalanobis
quantile constraints.

» Percentage changes denote relative distance to base VaR. For joint
stress, percentage changes refer to base ¢-VaR scenario.

» t-distribution parameter v calibrated to 13.5.
» Vol stress level for joint stress test is set to quantile in column one.

London Whale 21



Risk-driver identification (reverse stress test)
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Figure: Box-plots of correlation parameters.
Dots: observed parameters as of 23.03.2012.
Crosses: worst-case scenario under a 99%-quantile Mahalanobis distance.
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Factor selection

» Risk factors in “London Whale" were tailored to specific portfolio.

» In practice, factor models use industries and countries as factors to
model asset correlations.

» Problem: How to assign factors to assets?

Generalised approach
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Factor selection

» Risk factors in “London Whale" were tailored to specific portfolio.

» In practice, factor models use industries and countries as factors to
model asset correlations.

» Problem: How to assign factors to assets?
» Number of factors should be small, but include all important factors.
» Prior information: country of firm’s headquarter, primary industry

» ~- Bayesian variable selection to determine small number of factors
driving asset return

Generalised approach 25



Link correlations to risk factors

» Association of asset i € {1,...,p} with factor k € {1,...,d}:

Ly
» Correlation parameterisation:
d d
¢ij = tanh ( DAkl = Loy + D vl ey L) )
k=1 k=1
"inter” -correlations "intra" -correlations

with coefficients A\y,..., A\g,v1,...,vg € R.

Generalised approach 26



Link correlations to risk factors

» tanh: R — [—1,1] allows for negative correlations.

» tanh used in inferential statistics on sample correlation coefficients
(~ Fisher transformation).

» The following summation formula is 10
helpful for a rough interpretation of the o5

coefficients: oo

tanh(x)

tanh z + tanhy -0s
1 + tanh z tanhy 1o

tanh(z +y) =

Generalised approach 27
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Bayesian variable selection

» Different methods, e.g.
— Bayesian model selection compares posterior probabilities of
different models.
— Spike and slab priors include an indicator variable for each
coefficient and determines the indicator variable's posterior
probability of taking value one.

» |In our setting, Bayesian model selection worked best.

Generalised approach
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Bayesian model selection

» Denote candidate models by M,;, i =1,...,m.

» In a linear regression setting, each model M; includes a specific subset
of independent variables (= potential risk factors) and excludes the

other variables.

» Posterior model probability:
p(Mily) o< p(y|Mi)p(M;),

where
— y is the time series of a firm’s asset returns,
— p(M;) is the prior model probability,
— p(y|M;) is called the marginal likelihood.

(see e.g. Appendix B.5.4 of (Fahrmeir et al., 2013))

Generalised approach 30



Bayesian model comparison

» Posterior inclusion probabilities (PIP):

P(lg,20p =1ly) = > P(Mly).
BrEM;

» If number of parameters p is large, then full calculation of 2P posterior
model probabilities is infeasible.

» = Use Markov Chain Monte Carlo (MCMC) simulation.

Generalised approach
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Example: VW

> Daily returns (2002-2018):

— VW stock returns

— MSCI stock indices; 11 industries and 24 countries as factors
» Factors with PIP greater 0.5 are selected:

>>> print(res[res['PIP']>0.5].round(4))
coef PIP BVS pvalue
MXWOOCD Index 1.0000 1.0000 0.0000
9 MXWOOTC Index 0.9848 0.9900 0.0017
10 MXWOOUT Index 0.9996 1.0000 0.0000
18 MSDUSZ 0.6788 0.4940 0.0105
19 MSDUAT 0.7998 0.7613 0.0000
34 MSDUGR 1.0000 1.0000 0.0000

» CD (Consumer Discretionary) and GR (Germany) have prior inclusion
probability of 1.
» Other prior inclusion probabilities such that eight factors on average.

Generalised approach
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Factor selection

» Factors: MSCI stock indices representing 6 geographic regions and 11
industries

» Individual stocks: 500 S&P constituents, 30 DAX constituents
» Daily data from 1999-Jan 2021 (Source: Bloomberg, MSCI, Reuters)

» Factor assignment re-calibrated every quarter, based on 3-years of daily
data (88 quarters)

» Prior: hard-code primary geographic region and industry

» 6 factors on expectation

Generalised approach 34



Factor selection

» Number of quarters that each factor is included for SAP:
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Factor selection

» Number of quarters that each factor is included for Amazon:
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Correlations at beginning

Empirical correlations as of 2020-02-18
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of Covid-19 pandemic

Fitted correlations with parameters from 2020-02-18
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» Empirical & fitted correlations; top: 18 Feb, bottom: 18 Mar 2020.

Generalised approach

37



icients

Parameter box-plots until 2021-02-01
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within factors (right; "v;,").
Intra-correlations are generally higher than inter-correlations.

> Boxplots of coefficients of correlations between factors (left; “A;") and

Generalised approach
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Factor coefficients

Selected parameter time series (grey vertical lines indictate variable selection intervals)
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> Fitted “inter” parameters for selected risk factors (“A\;").

> Blue: EM EMEA,; orange: EU; green: EM L. Am.; red: EM Asia;
purple: N. Am.; brown: Pacific
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Factor coefficients

Selected parameter time series (grey vertical lines indictate variable selection intervals)
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> Fitted “intra” parameters for selected risk factors (“v").

» Blue: N. Am. inter; orange: EU; green: EM Asia; red: N. Am.; purple:
Financials
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Reverse stress parameters (red), fitted parameters as of 2020-02-18 (blue)
Reverse stress parameters (red), fitted parameters as of 2020-03-18 (blue)

Reverse stress testing (Covid-19 pandemic)
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» Worst-case scenario within 99% Maha distance

> Partially realised in Feb/March 2020
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Portfolio value at risk (%)

Value-at-risk impact

— VaR
—— Stressed VaR

2004 2006 2008 2010 2012 2014 2016 2018 2020
timestamp

> Blue: VaRggy 1 4ay on equally-weighted portfolio of DAX and S&P 500

» Orange: Stressed VaRggy 1 42y ON reverse stress scenario of 1 Feb 2021.
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Conclusion

We develop a correlation stress testing framework, linking (risk) factors
with correlations.

Reverse stress tests can be conducted by assigning the factor loading a
distribution.

“London whale": a significant de-correlation between investment grade
and high yield credit derivatives broke the “hedges” in the SCP.
Simple correlation stress testing exposes the significant risks in a
portfolio with high notional and low RWA.

General case: factors (e.g. industries, countries) are linked firms via
Bayesian variable selection methods

Outlook: apply PCA to generate factors; factors can often be given an
economic interpretation (global factor, Europe, etc.)

Conclusion
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